org.apache.predictionio.e2.engine

CategoricalNaiveBayesModel

case class CategoricalNaiveBayesModel(priors: Map[String, Double], likelihoods: Map[String, Array[Map[String, Double]]]) extends Serializable with Product

Model for naive Bayes classifiers with categorical variables.

priors

log prior probabilities

likelihoods

log likelihood probabilities

Linear Supertypes
Product, Equals, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. CategoricalNaiveBayesModel
  2. Product
  3. Equals
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CategoricalNaiveBayesModel(priors: Map[String, Double], likelihoods: Map[String, Array[Map[String, Double]]])

    priors

    log prior probabilities

    likelihoods

    log likelihood probabilities

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. val featureCount: Int

  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  13. val likelihoods: Map[String, Array[Map[String, Double]]]

    log likelihood probabilities

  14. def logScore(point: LabeledPoint, defaultLikelihood: (Seq[Double]) ⇒ Double = ls => Double.NegativeInfinity): Option[Double]

    Calculate the log score of having the given features and label

    Calculate the log score of having the given features and label

    point

    label and features

    defaultLikelihood

    a function that calculates the likelihood when a feature value is not present. The input to the function is the other feature value likelihoods.

    returns

    log score when label is present. None otherwise.

  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. def predict(features: Array[String]): String

    Return the label that yields the highest score

    Return the label that yields the highest score

    features

    features for classification

  19. val priors: Map[String, Double]

    log prior probabilities

  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped