org.apache.predictionio.e2.engine

MarkovChainModel

case class MarkovChainModel(transitionVectors: RDD[(Int, SparseVector)], n: Int) extends Product with Serializable

Markov Chain model

transitionVectors

transition vectors

n

top N used to construct the model

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MarkovChainModel
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MarkovChainModel(transitionVectors: RDD[(Int, SparseVector)], n: Int)

    transitionVectors

    transition vectors

    n

    top N used to construct the model

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  12. val n: Int

    top N used to construct the model

  13. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  16. def predict(currentState: Seq[Double]): Seq[Double]

    Calculate the probabilities of the next state

    Calculate the probabilities of the next state

    currentState

    probabilities of the current state

  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  18. val transitionVectors: RDD[(Int, SparseVector)]

    transition vectors

  19. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped